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1. Introduction
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1. Introduction

Joint Diagonalization(JD) has been widely applied

 Array processing (X. F. Gong, 2012)

 Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)

 Speech signal processing (D. T. Pham, 2003)

 Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)
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1. Introduction

Joint Diagonalization(JD) has been widely applied

Mixed signals Construct target matrices JD

Unloading matrix Separated signals

Fig.2 Blind source separation algorithm’s block diagram based JD
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1. Introduction

Joint diagonalization

• Several criteria applied to JD problems
 minimization of off-norm

 weighted least squares

 information theory 

• Optimization strategies
 some specific optimization like as Newton, Gauss iteration…

 algebraic strategies like as Jacobi-type or successive rotation
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2. The Successive Rotation

Cost function:
1
off ( )

K

kk

H


 BC B

while k<Niter && err>Tol

end 

B = I

for i = 1:N-1                                                   Sweep

for j = i +1:N

end

end

k = k + 1

 Niter: Maximal sweep number

 Tol:    Stopping threshold 

Obtain        ,                                     Rotation

to minimize ρ

, ( , ) , ( , )

H

k new i j k old i jC T C T( , )i jT

( , )new i j oldB T B
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 Problem: The time consumed in the above process is in quadratic    

relationship with the dimensionality of target matrices N

 Solution: So we consider the parallelization of these successive   

rotations to address this problem.



Rotation
, ( , ) , ( , )

H

k new i j k old i jC T C T

In general, the elementary rotation matrix:

only  impacts the ith and jth row and column of 

( , )

ii ij

i j

ji jj

α α

α α

 
 
 
 
 
 
 
 

I

T I

I

( , )i jT ,k oldC

 JADE: Joint Approximate Diagonalization of Eigenmatrices by J.-F. Cardoso,1993

 CJDi:  Complex Joint Diagonalization by A. Mesloub, 2014
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3. The proposed algorithm

Parallelization of LUCJD

 The key to an efficient  parallelization is the segmentation of entire index

pairs into multiple subsets

 Then those optimal elementary rotations could be calculated at one shot

 Noting that the index pairs in one subset are non-conflicting

We develop the following 3 parallelization schemes: 

 Row-wise parallelization

 Column-wise  parallelization

 Diagonal-wise parallelization
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( , )i jT
( , )i jT

Row-wise

The subset elements of row-wise scheme are not non-conflicting comparing 

with other two schemes which might result in performance loss, 

this will be shown later.



while k<Niter && err>Tol

end 

B = I

for i = 1:N-1                                                   Sweep

end

k = k + 1

 Niter: Maximal sweep number

 Tol:    Stopping threshold 

Obtain               ,                                 Rotation

, ( , 1: ) , ( , 1: )

H

k new i i N k old i i N C T C T

( , 1: )i i NT

( , 1: )new i i N oldB T B

to minimize ρ

3. The proposed algorithm

Table 1 summarization of row-wise of LUCJD
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4. Simulation results

 The target matrices are generated as:

 Signal-to-noise ratio(SNR):

 Performance index(PI): to evaluate the JD quality

k s k n k

HP P C AD A N

1010log ( / )s nSNR P P

1 1 1 1

1
( ) 1 1

2 ( 1) max max

N N N N
ij ji

i j i jk ik k ki

g g
PI G

N N g g   

    
       

     
    

   

Simulation 1-Convergence Pattern

Simulation 2-Execution Time

Simulation 3-Joint Diagonalization Quality

We also consider the TPO parallelized strategy

(Tournament Player’s Ordering, by A. Holobar, EUROCON2003)
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4. Simulation Results

Simulation 1-Convergence Pattern

 Matrix numbers: K = 10

 Matrix dimensionality: N = 10

 5 independent runs

 Signal to Noise Ratio: SNR = 20dB

Fig.4 PI versus number of iterations
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4. Simulation Results

Simulation 1-Convergence Pattern

 Matrix numbers: K = 10

 Matrix dimensionality: N = 10

 5 independent runs

 Noise free

Fig.5 PI versus number of iterations
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Simulation 2-Execution Time

 Matrix numbers: K = 20

 Signal to Noise Ratio: SNR = 20dB

 100 Monte Carlo runs

Fig.6  Average running time versus dimensionality

4. Simulation Results
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• Largely reduce execution time

• More significant as N increases

• Row>Column>TPO>Diagonal

>sequential



4. Simulation Results

Simulation 3-Joint Diagonalization Quality

 Matrix numbers: K = 20

 Matrix dimensionality: N = 30

 100 Monte Carlo runs
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Fig.7  Performance index versus SNR
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• equal performance for low SNR

• Row-wise’s performance loss

• Parallelization schemes perform  

well



5. Conclusion

 Considers the parallelization of JD problems

- Joint diagonalization has been widely applied.

- This paper addresses the parallelization of JD with successive rotation.

- Introduces 3 parallelized schemes.

 Behavior of the parallelized schemes 

- Largely reduce the running time without losing the JD quality

- Row-wise scheme has slight performance loss
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