A Study on Parallelization of Successive Rotation Based Joint Diagonalization

Xiu－Lin Wang，Xiao－Feng Gong，Qiu－Hua Lin Dalian University of Technology，China 19 th DSP，August， 2014

Content

1. Introduction
2. The successive rotation
3. The proposed algorithm
4. Simulation results
5. Conclusion

1. Introduction

Joint diagonalization

JD seeks unloading matrix \boldsymbol{B} so that $\boldsymbol{B C}_{k} \boldsymbol{B}^{H}$ are diagonal

1. Introduction

Joint Diagonalization(JD) has been widely applied

> Array processing (X. F. Gong, 2012)
> Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)
> Speech signal processing (D. T. Pham, 2003)
> Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)

Slicewise form: $\quad \Gamma(:,:, k)=\boldsymbol{A} \times \boldsymbol{D}_{k} \times \boldsymbol{B}^{T}$

Fig. 1 Visualization of models for CPD

1. Introduction

Joint Diagonalization(JD) has been widely applied

> Array processing (X. F. Gong, 2012)
> Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)
> Speech signal processing (D. T. Pham, 2003)
> Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)

Slicewise form: $\quad \Gamma(: .,:, k)=\boldsymbol{A} \times \boldsymbol{D}_{k} \times \boldsymbol{B}^{T}$

Fig. 1 Visualization of models for CPD

1. Introduction

Joint Diagonalization(JD) has been widely applied

> Array processing (X. F. Gong, 2012)
> Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)
> Speech signal processing (D. T. Pham, 2003)
> Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)

Slicewise form: $\quad \Gamma(:,:, k)=\boldsymbol{A} \times \boldsymbol{D}_{k} \times \boldsymbol{B}^{T}$

Fig. 1 Visualization of models for CPD

1. Introduction

Joint Diagonalization(JD) has been widely applied

$>$ Array processing (X. F. Gong, 2012)
> Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)
> Speech signal processing (D. T. Pham, 2003)
> Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)

Slicewise form: $\quad \Gamma(:,:, k)=\boldsymbol{A} \times \boldsymbol{D}_{k} \times \boldsymbol{B}^{T}$

Fig. 1 Visualization of models for CPD

1. Introduction

Joint Diagonalization(JD) has been widely applied

> Array processing (X. F. Gong, 2012)
> Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)
> Speech signal processing (D. T. Pham, 2003)
> Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)

Slicewise form: $\quad \Gamma(:,:, k)=\boldsymbol{A} \times \boldsymbol{D}_{k} \times \boldsymbol{B}^{T}$

Fig. 1 Visualization of models for CPD

1. Introduction

Joint Diagonalization(JD) has been widely applied

> Array processing (X. F. Gong, 2012)
> Tensor decomposition (L. Delathauwer, 2008; X. F. Gong, 2013)
> Speech signal processing (D. T. Pham, 2003)
> Blind source separation (J. F. Cardoso, 1993; A. Mesloub, 2014)

Fig. 2 Blind source separation algorithm's block diagram based JD

1. Introduction

Joint diagonalization

- Several criteria applied to JD problems
- minimization of off-norm

■ weighted least squares

- information theory
- Optimization strategies

■ some specific optimization like as Newton, Gauss iteration...
■ algebraic strategies like as Jacobi-type or successive rotation

1. Introduction

Joint diagonalization

- Several criteria applied to JD problems
- minimization of off-norm

■ weighted least squares

- information theory
- Optimization strategies

■ some specific optimization like as Newton, Gauss iteration...
■ algebraic strategies like as Jacobi-type or successive rotation

1. Introduction

Joint diagonalization

- Several criteria applied to JD problems
- minimization of off-norm
- weighted least squares
- information theory
- Optimization strategies

■ some specific optimization like as Newton, Gauss iteration...
■ algebraic strategies like as Jacobi-type or successive rotation

1. Introduction

Joint diagonalization

- Several criteria applied to JD problems
- minimization of off-norm

■ weighted least squares

- information theory
- Optimization strategies

■ some specific optimization like as Newton, Gauss iteration...
■ algebraic strategies like as Jacobi-type or successive rotation

2. The Successive Rotation

Cost function: $\quad \rho=\sum_{k=1}^{K} \operatorname{off}\left(\boldsymbol{B C} \boldsymbol{C}_{k} \boldsymbol{B}^{H}\right)$

2. The Successive Rotation

Cost function: $\quad \rho=\sum_{k=1}^{K} \operatorname{off}\left(\boldsymbol{B C} \boldsymbol{C}_{k} \boldsymbol{B}^{H}\right)$

2. The Successive Rotation

Cost function: $\quad \rho=\sum_{k=1}^{K} \operatorname{off}\left(\boldsymbol{B C} \boldsymbol{C}_{k} \boldsymbol{B}^{H}\right)$

2. The Successive Rotation

Cost function: $\quad \rho=\sum_{k=1}^{K} \operatorname{off}\left(\boldsymbol{B C} \boldsymbol{C}_{k} \boldsymbol{B}^{H}\right)$

2. The Successive Rotation

Cost function: $\quad \rho=\sum_{k=1}^{K} \operatorname{off}\left(\boldsymbol{B C} \boldsymbol{C}_{k} \boldsymbol{B}^{H}\right)$

2. The Successive Rotation

Cost function: $\quad \rho=\sum_{k=1}^{K} \operatorname{off}\left(\boldsymbol{B C} \boldsymbol{C}_{k} \boldsymbol{B}^{H}\right)$

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

In general, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & \\
& \alpha_{i i} & & \alpha_{i j} & \\
& & \boldsymbol{I} & & \\
& \alpha_{j i} & & \alpha_{j j} & \\
& & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th and j th row and column of $\boldsymbol{C}_{k, \text { old }}$

■ JADE: Joint Approximate Diagonalization of Eigenmatrices by J.-F. Cardoso,1993
■ CJDi: Complex Joint Diagonalization by A. Mesloub, 2014

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

In general, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & \\
& \alpha_{i i} & & \alpha_{i j} & \\
& & \boldsymbol{I} & & \\
& \alpha_{j i} & \alpha_{j j} & \\
& & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th and j th row and column of $\boldsymbol{C}_{k, \text { old }}$

■ JADE: Joint Approximate Diagonalization of Eigenmatrices by J.-F. Cardoso,1993
■ CJDi: Complex Joint Diagonalization by A. Mesloub, 2014

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

In general, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{llll}
\boldsymbol{I} & & & \\
& \alpha_{i i} & & \alpha_{i j} \\
& & \boldsymbol{I} & \\
& \alpha_{j i} & & \alpha_{j j} \\
& & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th and j th row and column of $\boldsymbol{C}_{k, o l d}$

■ JADE: Joint Approximate Diagonalization of Eigenmatrices by J.-F. Cardoso, 1993
■ CJDi: Complex Joint Diagonalization by A. Mesloub, 2014

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

But in LUCJD, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& 1 & & & \\
& & \boldsymbol{I} & & \\
& \alpha_{i j} & & 1 & \\
& & & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th row and column of $\boldsymbol{C}_{k, o l d}$
LUCJD:
■ LU decomposition for Complex Joint Diagonalization by K. Wang, LVA/ICA2012

- To solve the complex non-orthogonal joint diagonalization problem via LU decomposition and successive rotation

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

But in LUCJD, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& 1 & & & \\
& & \boldsymbol{I} & & \\
& \alpha_{i j} & & 1 & \\
& & & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th row and column of $\boldsymbol{C}_{k, o l d}$
LUCJD:
■ LU decomposition for Complex Joint Diagonalization by K. Wang, LVA/ICA2012

- To solve the complex non-orthogonal joint diagonalization problem via LU decomposition and successive rotation

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

But in LUCJD, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& 1 & & & \\
& & \boldsymbol{I} & & \\
& \alpha_{i j} & & 1 & \\
& & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th row and column of $C_{k, \text { old }}$
LUCJD:
■ LU decomposition for Complex Joint Diagonalization by K. Wang, LVA/ICA2012
■ To solve the complex non-orthogonal joint diagonalization problem via LU decomposition and successive rotation

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

But in LUCJD, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& 1 & & & \\
& & \boldsymbol{I} & & \\
& \alpha_{i j} & & 1 & \\
& & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th row and column of $C_{k, o l d}$

LUCJD:

■ LU decomposition for Complex Joint Diagonalization by K. Wang, LVA/ICA2012
■ To solve the complex non-orthogonal joint diagonalization problem via LU decomposition and successive rotation

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

But in LUCJD, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& 1 & & & \\
& & \boldsymbol{I} & & \\
& \alpha_{i j} & & 1 & \\
& & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th row and column of $C_{k, \text { old }}$
LUCJD:
■ LU decomposition for Complex Joint Diagonalization by K. Wang, LVA/ICA2012
■ To solve the complex non-orthogonal joint diagonalization problem via LU decomposition and successive rotation

2. The Successive Rotation

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

But in LUCJD, the elementary rotation matrix:

$$
\boldsymbol{T}_{(i, j)}=\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& 1 & & & \\
& & \boldsymbol{I} & & \\
& \alpha_{i j} & & 1 & \\
& & & & \boldsymbol{I}
\end{array}\right]
$$

$\boldsymbol{T}_{(i, j)}$ only impacts the i th row and column of $C_{k, o l d}$
In this paper, we consider the parellelization of LUCJD

- Io soive the compiex non-ortnogonal joint aiagonalization prodiem via LU decomposition and successive rotation

3. The proposed algorithm

Parallelization of LUCJD

- The key to an efficient parallelization is the segmentation of entire index pairs into multiple subsets
- Then those optimal elementary rotations could be calculated at one shot
- Noting that the index pairs in one subset are non-conflicting

We develop the following 3 parallelization schemes:

- Row-wise parallelization
- Column-wise parallelization
- Diagonal-wise parallelization

3. The proposed algorithm

Parallelization of LUCJD

- The key to an efficient parallelization is the segmentation of entire index pairs into multiple subsets
- Then those optimal elementary rotations could be calculated at one shot
- Noting that the index pairs in one subset are non-conflicting

We develop the following 3 parallelization schemes:

- Row-wise parallelization
- Column-wise parallelization
- Diagonal-wise parallelization

3. The proposed algorithm

Parallelization of LUCJD

- The key to an efficient parallelization is the segmentation of entire index pairs into multiple subsets
- Then those optimal elementary rotations could be calculated at one shot
- Noting that the index pairs in one subset are non-conflicting

We develop the following 3 parallelization schemes:

- Row-wise parallelization
- Column-wise parallelization
- Diagonal-wise parallelization

3. The proposed algorithm

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

Fig. 3 Subset segmentation for parallelization of LUCJD

3. The proposed algorithm

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

Fig. 3 Subset segmentation for parallelization of LUCJD

3. The proposed algorithm

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

Fig. 3 Subset segmentation for parallelization of LUCJD

3. The proposed algorithm

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

Fig. 3 Subset segmentation for parallelization of LUCJD

$$
\begin{aligned}
& \Omega_{j}^{C} \square\{(i, j) \mid i=1,2, \ldots, j-1\} \\
& j=2,3, \ldots, N
\end{aligned}
$$

3. The proposed algorithm

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

(a) Column-wise

(b) Row-wise

(c) Diagonal-wise

Fig. 3 Subset segmentation for parallelization of LUCJD

$$
\begin{array}{|l|l|}
\hline \Omega_{j}^{C} \square\{(i, j) \mid i=1,2, \ldots, j-1\} & \Omega_{i}^{R} \square\{(i, j) \mid j=i+1, \ldots, N\} \\
j=2,3, \ldots, N & i=1,2, \ldots, N-1 \\
\hline
\end{array}
$$

3. The proposed algorithm

$$
\text { Rotation } \boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, j)} \boldsymbol{C}_{k, \text { old }} \boldsymbol{T}_{(i, j)}^{H}
$$

(a) Column-wise

(b) Row-wise

(c) Diagonal-wise

Fig. 3 Subset segmentation for parallelization of LUCJD

| $\Omega_{j}^{C} \square\{(i, j) \mid i=1,2, \ldots, j-1\}$ |
| :--- | :--- | :--- |
| $j=2,3, \ldots, N$ | | $\Omega_{i}^{R} \square\{(i, j) \mid j=i+1, \ldots, N\}$ |
| :--- |
| $i=1,2, \ldots, N-1$ | | $\Omega_{j}^{D} \square\{(i, i+j) \mid i=1,2, \ldots, N-j\}$ |
| :--- |
| $j=1,2, \ldots N-1$ |

3. The proposed algorithm

Column/diagonal-wise

3. The proposed algorithm

Column/diagonal-wise

3. The proposed algorithm

Row-wise

3. The proposed algorithm

Row-wise

The subset elements of row-wise scheme are not non-conflicting comparing with other two schemes which might result in performance loss, this will be shown later.

3. The proposed algorithm

Table 1 summarization of row-wise of LUCJD

while $\mathrm{k}<$ Niter \& \& err>Tol$B=I$		\square Niter: Maximal sweep number - Tol: Stopping threshold
	for $i=1: \mathrm{N}-1$	Sweep
	Obtain $\boldsymbol{T}_{(i, i+1: N)}$, $\boldsymbol{C}_{k, \text { new }}=\boldsymbol{T}_{(i, i+1: N)} \boldsymbol{C}_{k, o l d} \boldsymbol{T}_{(i, i+1: N}^{H}$ to minimize ρ	Rotation $\boldsymbol{B}_{\text {new }}=\boldsymbol{T}_{(i, i+1: N)} \boldsymbol{B}_{\text {old }}$
	end $k=k+1$	

4. Simulation results

■ The target matrices are generated as: $\boldsymbol{C}_{k}=P_{s} \boldsymbol{A D} \boldsymbol{D}_{k} \boldsymbol{A}^{H}+P_{n} \boldsymbol{N}_{k}$
■ Signal-to-noise ratio(SNR): $\quad S N R=10 \log _{10}\left(P_{s} / P_{n}\right)$
■ Performance index(PI): to evaluate the JD quality

$$
\operatorname{PI}(G)=\frac{1}{2 N(N-1)}\left[\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{i j}\right|}{\max _{k}\left|g_{i k}\right|}-1\right)+\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{j i}\right|}{\max _{k}\left|g_{k i}\right|}-1\right)\right]
$$

We also consider the TPO parallelized strategy (Tournament Player's Ordering, by A. Holobar, EUROCON2003)
>Simulation 1-Convergence Pattern
>Simulation 2-Execution Time
>Simulation 3-Joint Diagonalization Quality

4. Simulation results

- The target matrices are generated as: $\boldsymbol{C}_{k}=P_{s} A D_{k} A^{H}+P_{n} \boldsymbol{N}_{k}$

■ Signal-to-noise ratio(SNR): $\quad S N R=10 \log _{10}\left(P_{s} / P_{n}\right)$
■ Performance index(PI): to evaluate the JD quality

$$
\operatorname{PI}(G)=\frac{1}{2 N(N-1)}\left[\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{i j}\right|}{\max _{k}\left|g_{i k}\right|}-1\right)+\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{j i}\right|}{\max _{k}\left|g_{k i}\right|}-1\right)\right]
$$

We also consider the TPO parallelized strategy (Tournament Player's Ordering, by A. Holobar, EUROCON2003)
>Simulation 1-Convergence Pattern
>Simulation 2-Execution Time
>Simulation 3-Joint Diagonalization Quality

4. Simulation results

■ The target matrices are generated as: $\boldsymbol{C}_{k}=P_{s} \boldsymbol{A D} \boldsymbol{D}_{k} \boldsymbol{A}^{H}+P_{n} \boldsymbol{N}_{k}$
■ Signal-to-noise ratio(SNR): $\quad S N R=10 \log _{10}\left(P_{s} / P_{n}\right)$
■ Performance index(PI): to evaluate the JD quality

$$
\operatorname{PI}(G)=\frac{1}{2 N(N-1)}\left[\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{i j}\right|}{\max _{k}\left|g_{i k}\right|}-1\right)+\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{j i}\right|}{\max _{k}\left|g_{k i}\right|}-1\right)\right]
$$

We also consider the TPO parallelized strategy
(Tournament Player's Ordering, by A. Holobar, EUROCON2003)
>Simulation 1-Convergence Pattern
>Simulation 2-Execution Time
>Simulation 3-Joint Diagonalization Quality

4. Simulation results

■ The target matrices are generated as: $\boldsymbol{C}_{k}=P_{s} \boldsymbol{A D} \boldsymbol{D}_{k} \boldsymbol{A}^{H}+P_{n} \boldsymbol{N}_{k}$
■ Signal-to-noise ratio(SNR): $\quad S N R=10 \log _{10}\left(P_{s} / P_{n}\right)$
■ Performance index(PI): to evaluate the JD quality

$$
\operatorname{PI}(G)=\frac{1}{2 N(N-1)}\left[\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{i j}\right|}{\max _{k}\left|g_{i k}\right|}-1\right)+\sum_{i=1}^{N}\left(\sum_{j=1}^{N} \frac{\left|g_{j i}\right|}{\max _{k}\left|g_{k i}\right|}-1\right)\right]
$$

We also consider the TPO parallelized strategy (Tournament Player's Ordering, by A. Holobar, EUROCON2003)

- Simulation 1-Convergence Pattern
>Simulation 2-Execution Time
> Simulation 3-Joint Diagonalization Quality

4. Simulation Results

Simulation 1-Convergence Pattern

- Matrix numbers: $\mathrm{K}=10$
- Matrix dimensionality: $\mathrm{N}=10$
- 5 independent runs

■ Signal to Noise Ratio: SNR = 20dB

Fig. 4 PI versus number of iterations

4. Simulation Results

Simulation 1-Convergence Pattern

- Matrix numbers: $\mathrm{K}=10$
- Matrix dimensionality: $\mathrm{N}=10$
- 5 independent runs

■ Signal to Noise Ratio: SNR = 20dB

Fig. 4 PI versus number of iterations

4. Simulation Results

Simulation 1-Convergence Pattern

- Matrix numbers: $\mathrm{K}=10$
- Matrix dimensionality: $\mathrm{N}=10$
- 5 independent runs

■ Signal to Noise Ratio: SNR = 20dB

Fig. 4 PI versus number of iterations

4. Simulation Results

Simulation 1-Convergence Pattern

- Matrix numbers: $\mathrm{K}=10$
- Matrix dimensionality: $\mathrm{N}=10$
- 5 independent runs
- Signal to Noise Ratio: SNR = 20dB

Fig. 4 PI versus number of iterations

4. Simulation Results

Simulation 1-Convergence Pattern

- Matrix numbers: $\mathrm{K}=10$
- Matrix dimensionality: $\mathrm{N}=10$
- 5 independent runs

■ Signal to Noise Ratio: SNR = 20dB

Fig. 4 PI versus number of iterations

4. Simulation Results

Simulation 1-Convergence Pattern

- Matrix numbers: $\mathrm{K}=10$
- Matrix dimensionality: $\mathrm{N}=10$
- 5 independent runs
- Noise free

Fig. 5 PI versus number of iterations

4. Simulation Results

Simulation 2-Execution Time

- Matrix numbers: $\mathrm{K}=20$

■ Signal to Noise Ratio: SNR = 20dB

- 100 Monte Carlo runs

- Largely reduce execution time
- More significant as N increases
- Row>Column>TPO>Diagonal >sequential

Fig. 6 Average running time versus dimensionality

4. Simulation Results

Simulation 3-Joint Diagonalization Quality

- Matrix numbers: $\mathrm{K}=20$
- Matrix dimensionality: $\mathrm{N}=30$
- 100 Monte Carlo runs

Fig. 7 Performance index versus SNR

5. Conclusion

- Considers the parallelization of JD problems
- Joint diagonalization has been widely applied.
- This paper addresses the parallelization of JD with successive rotation.
- Introduces 3 parallelized schemes.
- Behavior of the parallelized schemes
- Largely reduce the running time without losing the JD quality
- Row-wise scheme has slight performance loss

5. Conclusion

- Considers the parallelization of JD problems
- Joint diagonalization has been widely applied.
- This paper addresses the parallelization of JD with successive rotation.
- Introduces 3 parallelized schemes.
- Behavior of the parallelized schemes
- Largely reduce the running time without losing the JD quality
- Row-wise scheme has slight performance loss

5. Conclusion

- Considers the parallelization of JD problems
- Joint diagonalization has been widely applied.
- This paper addresses the parallelization of JD with successive rotation.
- Introduces 3 parallelized schemes.
- Behavior of the parallelized schemes
- Largely reduce the running time without losing the JD quality
- Row-wise scheme has slight performance loss

谢谢!
 Thank you!

